Recently my STEM class (offered at a non-profit homeschooling co-op) finished up an interactive multi-lesson unit on alternative energy technology. Each student picked an energy topic, researched it and presented it to the class: we heard about fission, photovoltaic effect, high-speed train function, wind turbines and more. One week students designed paper turbines to see how they could affect rotational speed - see how speedy the "turbines" were in the video! We used a Thames and Kosmos car kit where the car could be powered by solar energy, battery energy, or hydrogen energy. The kit helped us explore electricity including static and current, concepts of voltage and resistance, solar panels and battery circuits. Students were able to tinker with, observe and sketch a one-wheel drive transmission and map how electrons actually move through a circuit, turn a gear, and propel a car. One session had students measuring voltages of batteries with a multimeter and experimenting with how to orient a solar panel to maximize voltage or current.
My favorite part was getting the fuel cell component working - this took a ton of repair on a kit that unfortunately was fragile. Once it was workable, students observed the electrolysis of water using a current to separate water into its component gases oxygen and hydrogen! This separation required electronic current to complete, and we were able to make it work with currents from both batteries OR our solar panel! After the oxygen and hydrogen were formed and stored in small tanks leading to a fuel cell, the students saw how the gases combined back into water, releasing electrons, which powered the car without any other energy source!
Recently, we've spent time each week debriefing service learning group work - what's been accomplished, what goals are coming up, and how best to accomplish those goals. I'm happy to report that all four groups now have meaningful work. The teams and projects are:
- Team 1: Partnering with the non-profit homeschool co-op for a parking lot study, scale model creation, study of people movement through the system, and presentation of findings and graphics to the board. Students have already provided feedback on a short-term solution with a graphic showing new car and pedestrian zones.
- Team 2: Innovation/invention group designing a wind tunnel that models shear forces. Planned use of the tunnel to model a vertical axis wind turbine. Potential for copyright/patent application.
- Team 3: Partnering with Computers 4 Kids to design and teach a short class on Google SketchUp. C4K helps low-income students become technologically literate through project-based lessons and mentoring. Team Hedges may present their course to C4K staff, volunteers, or students.
- Team 4: Partnering with the Culpeper Senior Center to increase technology resources available. Students have already done an assessment of the current computer technology available to seniors. Currently there are no networked computers and only 2 of 4 desktops are functioning. Seniors mostly play games like solitaire, if they use the computers at all. Studying ways to provide internet access to the computers and basic computer skills training to either Senior Center staff or seniors themselves. Training may be in hardware or software.
Useful information. Thanks for giving us this useful information. In a previous post I said that perhaps Graphene Battery could be used on the Gen1 Enterprise for backup power. Graphene Information: Learn about the use of Graphene in Graphene ultra- and supercapacitors, Graphene Transistors and Graphene Batteries. Thanks for sharing.....
ReplyDelete